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Abstract
A model for soliton dynamics on a hydrogen-bond network in helical proteins
is proposed. It employs the formalism of fully integrable Toda lattices in three
dimensions which admit phonons as well as solitons along the hydrogen bonds
of the helices. A simulation of the three-dimensional Toda lattice system shows
that the solitons are spontaneously created and are stable and moving along the
helix axis. A perturbation on one of the three H-bond lines forms solitons on the
other H bonds as well. The robust solitary wave may explain very long-lived
modes in the frequency range of 100 cm−1 which are found in recent x-ray laser
experiments. The dynamics parameters of the Toda lattice are in accordance
with the usual Lennard-Jones parameters used for realistic H-bond potentials
in proteins.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present paper is addressing important new experimental protein results, and in particular the
recent infrared (IR) measurements of long-lived excitations at 118 cm−1 using the pump probe
technique on bacteriorhodopsine [1]. These results are interesting because excitations at these
energies do not correspond to any local vibrational mode. Since they are in the far-IR region
they have been interpreted as collective modes, that is, modes that involve a large number of
amino acids, possibly involving large scale deformations of the protein. If so, one would expect
strong damping and short lifetimes because of steric hindrance from the remaining protein and
from the surrounding solvent. The relevance of these observations lies in the fact that such
states, corresponding to large protein domains, provide information on the dynamics and
stability of secondary and higher structures, and thus on the functions and the conformational
changes of a protein. However, the phenomenon of collective modes is not fully understood
from a theoretical point of view,since both models and numerical simulations face the difficulty
of a large number of degrees of freedom with complex interactions. In order to shed some light
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on the paradoxical long lifetimes of the modes an alternative interpretation was given in terms
of hydrogen-bond excitations running along the α-helix without causing major large scale
deformations [2]. The response at ∼100 cm−1, typically found in poly-amides, is generally
accepted to be due to phonons extended over H-bond chains [3]. Poly-amides form molecular
chains consisting of hydrogen-bonded units of (H–N–C=O) which are similar to those found
running almost parallel to the axis along the α-helices, and connecting every third residue.
Every residue is additionally connected to its neighbours along the spiral spine by a strong
peptide bond. Bacteriorhodopsine consists of seven connected α-helices, with an average
length of 25 residues. To test that the simple chain picture is relevant for bacteriorhodopsine,
we here perform numerical simulations using the special 3D architecture of the α-helix. We
find that, apart from phonon modes, there are long-lived excitations which may serve as an
energy reservoir for other excitations. They are not directly observable as a finite frequency
response signal in the excitation spectrum. They are localized modes, or solitons, travelling
along the hydrogen strands of an α-helix and coupled with the peptide bonds. Their long
lifetime is due to the fact that such waves, being non-oscillatory and localized, interact only
weakly with the other modes of the protein and with the surrounding medium and thus are not
strongly damped.

In this paper we propose to model the dynamic modes by mapping quantitatively an α-helix
onto a periodic frame that supports solitons, like a Toda lattice. Since a Toda lattice involves
only local interactions and allows one to describe solitons as explicit analytical solutions,
such a model would provide a useful tool, both for quick numerical simulations and feasible
mathematical approaches. Here we present a numerical study with special emphasis on the
spatio-temporal behaviour of the full helix, and we shall neglect explicitly considering the
internal excitations in the (H–N–C=O) units.

The dynamical behaviour of an α-helix has been much studied in the past, particularly
using simplified 1D models [4, 5]. The main emphasis has been on the so-called Davydov
soliton, which is related to the C=O excitation at ν ∼ 1650 cm−1. A recent study using only
non-linear coupling between the C=O and O · · · H excitations investigated the effects of the
3D coupling [6]. The interaction model is rather different from ours, and in particular the helix
was assumed to be confined in a narrow cylinder.

Here we concentrate mainly on the excitations along the hydrogen bonds and we have
found, among other things, the soliton excitations to be phase locked, and hence the excited
helix is spontaneously confined in a narrow cylinder.

2. Physical considerations

An essential feature of the helices in a protein is the hydrogen bond structure that keeps the
helix stable. Of course the basic structure of the helix is the poly-peptide backbone that is
wound up in a homogeneous spiral whose pitch or residues per turn determine what type of
helix is present, be it α-helix (the most common type) or a π-helix.

These bonds, especially in the case of the α-helix type where the hydrogen bonds run
almost parallel to the helix axis, can be regarded as a lattice where the interaction between
the constituents is a typical Lennard-Jones potential describing the van der Walls forces. The
interaction can, when expanded up to the next lowest order including the cubic term, be mapped
onto the studied Toda lattice.

In one dimension and around an equilibrium position at r0, a Toda potential has the
following form:

V (r) = a

b
e−bx + ax, (1)
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Figure 1. Comparison between the Lennard-Jones potential (broken curve) and a fit with Toda
potential (full curve) for the hydrogen bond. The agreement is good for physically relevant
excitation energies ∼100 cm−1.

where x = r −r0 is the displacement from the equilibrium and a and b are two parameters. As
we can see from figure 1, a Toda potential is asymmetric in a way similar to a Lennard-Jones
potential. It does not become flat at large distances but at short ranges it may be used to model
the hard core repulsion on one side of the equilibrium and the weaker interaction on the other.
An expansion around the equilibrium r = r0 gives

V (r) = a

b
+

1

2
abx2 − 1

6
ab2x3 + o(x4), (2)

showing that the product ab corresponds to the force constant k in a harmonic approximation.
By equating the coefficients of the Toda expansion equation (2) to the expansion of a Lennard-
Jones potential for the hydrogen bond, a and b can be estimated yielding a = kr0/21 and
b = 21/r0.

The harmonic frequency ν of a phonon (at maximum density of states) is given by

2πν = 2
√

k/m. (3)

In a chain of amino acids connected by hydrogen bonds O · · · H, k ≈ 1.41×104 dyn cm−1

and m = 1.7 × 10−22 g is the average mass of the residues [7]. This estimation gives
ν = 97 cm−1. A complete normal mode calculation for an infinite poly(L-alanine)
α-helix gives a peak exactly at 118 cm−1 [7].

A similar fit may be given for the peptide bond and provides two Toda constants c and d with
a corresponding force constant roughly 40 times that of the hydrogen bonds [2] (simulations
with other choices of parameters for the peptide bonds have been done,up to a ±20% parameter
change, yielding qualitatively similar results). It is in this range that the Toda lattice can sustain
stable solitons and hence give an argument for considering soliton dynamics on the hydrogen-
bond network. As we shall show in the following sections, the two bonds have a very different
role in energy propagation. The hydrogen bonds provide three one-dimensional, nonlinear
lattices, where solitons appear, while the peptide bonds act as a strong coupling among the
three lattices.
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Figure 2. The system modelled. Each dot is an amino acid, i.e. the (H–N–C=O) unit including
various side chains bound to the C atom. The heavy and thin lines represent, respectively, the
peptide and hydrogen bonds. The space unit has been normalized to the equilibrium distance of
the hydrogen bond. The scale has been enlarged on the x–y plane. The peptide bonds connect all
the amino acids in a spiral. The hydrogen bonds connect the amino acids in three parallel chains.

3. Model description

In this work we thus modelled an α-helix with the aim of investigating the propagation of
phonons and solitons along the hydrogen bond and the effect of the coupling with the peptide
bond. Direct integration of the equation of motion has been carried out. A picture of the
system modelled is shown in figure 2. The Hamiltonian of the system is given by adding
together the kinetic energy, the potential energy of the three chains with the hydrogen bonds
and the potential energy of the peptide bonds. Calling x j and p j the space coordinate and the
momentum of the j th amino acid and numbering the amino acids as they appear along the
spiral, the Hamiltonian is given by

H = Ekin + VH + Vpeptide = 1
2

N∑
j=1

p2
j +

N∑
j=1

Va,b(x j , x j+1, x j−1) +
N∑

j=1

Vc,d(x j , x j+3, x j−3),

(4)

where V are Toda potentials of parameters a, b and c, d and have obviously to include only
the amino acids with j − 1 > 0, j − 3 > 0, j + 1 < N , j + 3 < N . The equation of motion is
obtained straightforwardly.

4. Solitons along  the H bo nds

Let us consider an α-helix with a perturbation along one of the H-bond chains. The energy
flow along the helix is shown in figures 3 and 4. Due to the presence of the peptide bonds, the
perturbed chain is coupled with the other two chains present in the helix. As a consequence,
not all the energy travels along the chain in a localized way, but part of it remains close to
the perturbation point and spreads into the system at a slower speed. Another interesting
phenomenon resulting from the fact that the three chains are bounded can be seen looking
at the energy flow along the other two chains (figure 5). We see that some energy is soon
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Figure 3. Propagation of a perturbation along the hydrogen bonds, in the presence of the peptide
bonds. Although a large amount of energy remains localized close to the perturbed amino acid, a
soliton is formed spontaneously. The perturbation has an energy of 618 cm−1. The snapshots are
taken every 0.1 ps. The other two hydrogen chains not shown have an analogous behaviour. The
vertical axis gives the energy in cm−1 and the horizontal axis indicates the residue number.

transferred along the peptide bond to other chains. As in the case of the perturbed chain, we
can identify two waves: one fast and localized and the other slow. The three solitons along
the hydrogen bonds are travelling together. If the energy flow of the entire helix is plotted
(figure 4), one finds that the solitons of the three hydrogen chains compose a united triple
soliton, travelling along the axis of the whole helix.

The basic mechanism of the triple soliton solution is given by the two different roles of the
hydrogen and peptide bonds. The hydrogen bond provides three one-dimensional lattices that
can support solitary waves. On the other hand, the peptide bond acts as a coupling among the
H-bond chains: it induces solitons from one chain to another and entrains them, but otherwise
does not qualitatively affect their dynamics. This observation can be verified noticing that,
after the triple wave is formed, each soliton behaves as if it was on an independent, one-
dimensional lattice with the constant of the hydrogen bonds. In fact, the dynamics of a soliton
on a one-dimensional Toda lattice is characterized by the following relations [8]. The energy
is

E = 2a

b
(sinh κ cosh κ − κ); (5)

the profile, in terms of the displacements |x j | from the equilibrium distance, is given by

e−bx j − 1 = m

ab
β2 sech2(κ j ± βt); (6)

and finally the speed v is

v =
√

ab

m

sinh κ

κ
. (7)
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Figure 4. Energy flow along the whole helix. The three solitons along the hydrogen bonds compose
a united soliton, travelling along the whole system.
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Figure 5. Space–time plot of the energy flow. The top-left picture gives all the amino acids,
while the others show the amino acids belonging to the same chain of hydrogen bonds. Time is in
picoseconds. The vertical axis gives the time in picoseconds and the horizontal axis indicates the
residue number.

In such relations, β = √
ab/m sinh κ and κ is a parameter that completely characterizes

the soliton dynamics and shape (I/κ being proportional to the width of the soliton). If κ
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Figure 6. Conformational change of the α-helix after a perturbation that gives an impulse to the
first amino acid (along the axial direction and toward the helix). There are two responses: a large
and slow distortion mode, and a localized and quickly (supersonically) moving pulse, due to the
soliton (for the latter see the enlargement in figure 7). A perturbation given in the opposite direction
also gives rise to a qualitatively similar phenomenon. Snapshots at t = 0, 0.3, 0.6, 1.2, 2.4 and
3 ps. See figure 5 for an overview of the energy flow along the helix.

is computed by fitting the energy, the profile and velocity of one of the solitons using the
parameter of the H-bond chain only, approximately the same value is obtained in all the
three fits: respectively, 0.74, 0.85 and 0.78. Using the latter, this correspond to an energy of
E = 41 cm−1 distributed over about eight sites (see figure 4) and a (supersonic) velocity of
v = 1.10 vs , where the sound velocity vs = 1.73 × 105 cm s−1.

In a perfect (infinite, 1D) Toda lattice solitons and periodic waves (sinusoidal in the limit
of small energies) can exist simultaneously, with infinite lifetime [8]. Small deviations from
the ideal picture will lead to a small coupling, and hence exchange of energy, between the two
modes. Moreover, the periodic wave can be obtained as a superposition of solitons [8] and vice
versa. The dispersion relation between the wavelength λ and the frequency ν of the periodic
wave is given by

2Fν =
√

ab

m

/√
1

sn2(2Fλ) − 1
+

G

F
, (8)
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Figure 7. Enlargement of figure 6. The localized wave corresponding to the triple soliton travelling
on the hydrogen chains along the helix. Snapshots every 0.6 ps starting from t = 0.8 ps. The
arrows show the position of the soliton.

where sn is a Jacobian elliptic function and F and G are two parameters that depend on the
profile. At the found relevant energies and deviations the Toda and the van der Walls potential
are almost identical, see figure 1. Hence we expect the obtained results to be essentially valid
also for the latter more realistic potential.

Other simulations, performed by initializing the system with different energies, show
solitons of different width, but again in agreement with the 1D Toda model. We have also
studied the effect of changing the parameters of the hydrogen and peptide bonds and found
that only the hydrogen bond parameters affects the dynamics and shape of the solitons.

We conclude that the peptide bond is important only for creating and entraining the three
solitons, while the behaviour of the coupled solitons agree, to a good approximation with
respect to the dynamics and shape, with that one would have on the uncoupled 1D lattice of
the H bonds. In particular, we do not see a concentration of energy on one strand, as reported
by Hennig [6] for strong non-linear coupling. In fact the opposite: an excitation applied to one
strand results in phase-locked solitons moving in parallel on all three strands. That is important
for keeping the α-helix confined in space. For some perturbations we have also observed a
train of solitons, emitted periodically by the distortion mode.
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5. Discussion

An α-helix can be modelled by three coupled Toda lattices. The specific topology of this
system gives rise to peculiar collective oscillations that are of great relevance for proteins,
since they control their structure formation and may also be related to their folding/unfolding
behaviour. In this work we have focused on a mode that has been observed in the pump–probe
experiments and, given its relatively low energy ∼100 cm−1, has been related to extended,
collective modes. An unexplained feature of this mode is its long life. This is surprising,
since a collective mode, involving the motion of a lot of amino acids should have a strong
interaction with the rest of the protein and the solvent, and thus decay quickly. Following the
suggestion in [2], this problem has been approached by proposing that the behaviour of such
a mode involves considering also soliton solutions, i.e. localized waves that travel along the
hydrogen-bond chains of the helix and hence have a small interaction with the surroundings.
We observed two types of waves. The soliton on one hydrogen chain induces a soliton on
each of the other two hydrogen chains to which it is coupled through the peptide bond. The
three solitons propagate together in a single, localized, fast wave along the helix. A second
type of wave also appears in the system as a comparatively slower distortion mode. Let us
now discuss the two mechanisms in connection with the suggestion of [2]. It is useful to
look at the conformational change corresponding to the two waves (figures 6 and 7). The
solitary wave is then especially interesting. In fact, while the distortion mode results in a
large conformational change and for this reason may be quickly damped by the interaction
with the surroundings, the solitary wave allows us to keep an amount of energy over the helix
with a minimal conformational change. The solitons in the actual α-helix are not perfect and
will slowly disperse energy into excitations involving motion of the same atoms. That is, in
particular, to the phonons exciting the very same units in an oscillatory motion along the H
strands with energies up to ∼100 cm−1. This fact, with the observation that the three locked
solitons appear spontaneously, gives support to the idea proposed in [2].

Although we have not explicitly considered the internal excitations in the (H–N–C=O)
units, it is clear that the energy may also be of importance for stabilizing the C=O excitation at
ν ∼ 1650 cm−1; the soliton mechanism here described may also provide a means for having an
unexpected long lifetime of that mode. This fact has been observed and is reported by Austin
et al [10] and [9]. More work is in progress to elaborate on the model presented.
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